59 research outputs found

    Elastic properties of mono- and polydisperse two-dimensional crystals of hard--core repulsive Yukawa particles

    Full text link
    Monte Carlo simulations of mono-- and polydisperse two--dimensional crystals are reported. The particles in the studied system, interacting through hard--core repulsive Yukawa potential, form a solid phase of hexagonal lattice. The elastic properties of crystalline Yukawa systems are determined in the NpTNpT ensemble with variable shape of the periodic box. Effects of the Debye screening length (κ1\kappa^{-1}), contact value of the potential (ϵ\epsilon), and the size polydispersity of particles on elastic properties of the system are studied. The simulations show that the polydispersity of particles strongly influences the elastic properties of the studied system, especially on the shear modulus. It is also found that the elastic moduli increase with density and their growth rate depends on the screening length. Shorter screening length leads to faster increase of elastic moduli with density and decrease of the Poisson's ratio. In contrast to its three-dimensional version, the studied system is non-auxetic, i.e. shows positive Poisson's ratio

    Decay of metastable current states in one-dimensional resonant tunneling devices

    Full text link
    Current switching in a double-barrier resonant tunneling structure is studied in the regime where the current-voltage characteristic exhibits intrinsic bistability, so that in a certain range of bias two different steady states of current are possible. Near the upper boundary V_{th} of the bistable region the upper current state is metastable, and because of the shot noise it eventually decays to the stable lower current state. We find the time of this switching process in strip-shaped devices, with the width small compared to the length. As the bias V is tuned away from the boundary value V_{th} of the bistable region, the mean switching time \tau increases exponentially. We show that in long strips \ln\tau \propto (V_{th} -V)^{5/4}, whereas in short strips \ln\tau \propto (V_{th} -V)^{3/2}. The one-dimensional geometry of the problem enables us to obtain analytically exact expressions for both the exponential and the prefactor of \tau. Furthermore, we show that, depending on the parameters of the system, the switching can be initiated either inside the strip, or at its ends.Comment: 12 pages, 5 figures, update to published versio

    Spin resonance in a Luttinger liquid with spin-orbit interaction

    Get PDF
    Spin-orbit interaction in quantum wires leads to a spin resonance at low temperatures, even in the absence of an external dc magnetic field. We study the effect of electron-electron interaction on the resonance. This interaction is strong in quantum wires. We show that the electron-electron interaction changes the shape of the resonance curve and produces an additional cusp at the plasmon frequency. However, except for very strong electron-electron interaction these changes are weak since this interaction by itself does not break the spin-rotation symmetry that is violated weakly by the spin-orbit interaction and external magnetic field.Comment: 8 pages (including 3 pages of supplementary material), 2 figure

    Lifetime of metastable states in resonant tunneling structures

    Full text link
    We investigate the transport of electrons through a double-barrier resonant-tunneling structure in the regime where the current-voltage characteristics exhibit bistability. In this regime one of the states is metastable, and the system eventually switches from it to the stable state. We show that the mean switching time grows exponentially as the voltage across the device is tuned from the its boundary value into the bistable region. In samples of small area we find that the logarithm of the lifetime is proportional to the voltage (measured from its boundary value) to the 3/2 power, while in larger samples the logarithm of the lifetime is linearly proportional to the voltage.Comment: REVTeX 4, 5 pages, 3 EPS-figure

    Geometric Random Inner Products: A New Family of Tests for Random Number Generators

    Get PDF
    We present a new computational scheme, GRIP (Geometric Random Inner Products), for testing the quality of random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the average scalar products of random vectors generated in geometric objects, such as circles and spheres. We show that these average scalar products define a family of geometric constants which can be used to evaluate the quality of random number generators. We explicitly apply the GRIP tests to several random number generators frequently used in Monte Carlo simulations, and demonstrate a new statistical property for good random number generators

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Elastic properties of the rectangular crystalline phase of planar hard cyclic pentamers

    No full text
    Structural and elastic properties of the densest known solid phase of two-dimensional (2D) system of hard cyclic pentamers (each pentamer is composed of five discs which centres are placed at vertices of a perfect pentagon of sides equal to the disc diameter, delta) are studied by Monte Carlo simulations. The present study confirms that at high densities the pentamers form a 2D solid structure of rectangular lattice with two pentamers (which librate, without rotation, around their mean orientations) in the unit cell. Elastic constants calculated for this structure show that, in contrast to densely packed 2D hard cyclic heptamers (composed of seven discs of centres forming a perfect heptagon of sides equal to the disc diameter delta), the pentamers do not exhibit anomalous Poisson's ratios
    corecore